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Abstract. We derive the conservation laws for a wide class of discrete equations, including the
q-deformations of classical field-theoretic equations. The explicit expressions for the conserved
currents are used in the construction of the integrals of motion. The procedure is applied to the
nonlinear difference equation and to theq-wave equations inD = 3 andD = 4.

1. Introduction

We shall consider a simple and effective procedure for the construction of the deformed
conservation law and integrals of motion for a class of equations that depend on generalized
difference derivatives. Such equations occur in quantum algebra theory as the realizations
of the eigenvalue problem for Casimir operators [1–3], in the deformations of field-theoretic
equations, for example theκ-Klein–Gordon equation [1], theκ-Dirac equation [4], theq-
heat equation andq-wave equations introduced in [3], as well as in discrete models [5–8].
Let us note that the application of the standard difference derivative to field theory with
non-localized action, as well as to the relativistic model of the electron, has also been studied
in the literature [9–11].

We propose to extend the formalism of standard difference derivatives and use the
generalized difference derivative [12, 13]. This formulation allows us partly to extend some
of the results of discrete mechanics [5–8] as we can include the lattice structure into the
equations.

On the other hand, this formalism can easily be applied to discrete field models on an
arbitrary lattice.

In this paper we focus on almost linear equations with only one nonlinear term
independent of derivatives. As we know, for this class of equations we can derive, in
classical theory, the conservation laws using the Takahashi–Umezawa procedure [14].

Our main result is therefore the extension of this method to models with generalized
difference derivatives replacing the differential ones. The case of equations with symmetric
generalized difference derivatives has been considered in [15]. We begin in section 2
with a brief review of the results of [15]. In section 3 we present the construction of
the conservation laws and integrals of motion for models described by non-symmetric
generalized difference derivatives. Then the method thus introduced is applied to theq-
deformation of the wave equations and to the nonlinear general difference equation.
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Throughout the paper the following notation will be used.
• For the symmetric generalized difference derivative

∂̄φf (t) := f (φ(t))− f (φ−1(t))

φ(t)− φ−1(t)
. (1)

• For the non-symmetric generalized difference derivative

∂φf (t) = f (φ(t))− f (t)

φ(t)− t
. (2)

• For the transformation operators

ζ+f (t) = f (φ(t)) ζ−f (t) = f (φ−1(t)) ζ nf (t) = f (φn(t)) . (3)

The corresponding partial derivatives and transformation operators acting on the respective
variables will be denoted as̄∂φµ

, ∂φµ
andζµ.

We have chosen to number the points of the lattice by iterations of the transformation
φ. Nevertheless, all the results remain valid if one rewrites them according to standard
numbering. The notation is then as follows:
• For the symmetric generalized difference derivative:

∂̄φf (tn) := f (tn+1)− f (tn−1)

tn+1− tn−1
.

• For the non-symmetric generalized difference derivative:

∂φf (tn) = f (tn+1)− f (tn)

tn+1− tn
.

• For the transformation operators:

ζ+f (tn) = f (tn+1) ζ−f (tn) = f (tn−1) ζmf (tn) = f (tn+m) .

2. The conservation laws and integrals of motion in the models described by
symmetric generalized difference derivatives

Let us begin with a brief review of the results of [15], in which we derived the conservation
laws for linear equations with a generalized symmetric difference derivative of the form

3(∂̄)8 = 0 (4)

3(∂̄) =
N∑

l=0

3µ1...µl
∂̄φµ1

. . . ∂̄φµl
(5)

where the coefficients (which may be matrices) are constant and symmetric with respect to
the permutation of the set of indices(µ1 . . . µl) for eachl. The symmetry properties of the
coefficients are due to the fact that the derivatives∂̄φµ

commute.
The Leibnitz rule for this type of operator is deformed in comparison with the classical

differential calculus:

∂̄φ [f · g] = [∂̄φf ]ζ+g + [ζ−f ]∂̄φg . (6)

We have modified the Leibnitz rule so as to get on the right-hand side operators acting only
on one of the functions in the product. Taking into account the modified Leibnitz rule for
the symmetric derivative

Dφ [f (ζ− + ←ζ−)g] = f (∂̄φ +
←
∂̄ φ)g (7)
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where

Dφf (t) := f (φ(t))− f (t)

φ(t)− φ−1(t)

as well as the classical results of Takahashi and Umezawa [14] for linear equations, we now
construct the operator0µ with the property∑

µ

(∂̄φµ
+
←
∂̄φµ

) ◦ 0µ(∂̄,−
←
∂̄ ) = 3(∂̄)−3(−

←
∂̄ ) . (8)

Here we have introduced the product sign◦ to stress the way the left and right operators act
on the corresponding sides in the following formulae. Straightforward calculation shows
that

0µ(∂̄,−
←
∂̄ ) =

N−1∑
l=1

l∑
k=0

3µµ1...µl
(−
←
∂̄ φµ1

) . . . (−
←
∂̄ φµk

)∂̄φµk+1
. . . ∂̄φµl

+3µ (9)

fulfils the above equation (8).
This operator is also unique in the class of local operators. Let us sketch the proof.

Proof. Let us denote monomials of derivatives acting on the left- and right-hand sides as
follows:

[µ1, . . . , µk] = ∂̄φµ1
. . . ∂̄φµk

[µ1, . . . , µk] = (−
←
∂̄ φµ1

) . . . (−
←
∂̄ φµk

)

It is clear that to solve equation (8) locally (that means in the case of discrete models
to get the result depending on a finite number of non-negative powers of the derivatives)
we should consider the polynomial solution in operators∂̄ and

←
∂̄ of orderN − 1. We must

take into account two facts:

• Only the constant coefficients in such a polynomial are admissible, because the
dependence of coefficients on variables would provide on the right-hand side of equality
(8) terms depending on the operatorsζ+ andζ− due to (6). These operators cannot be
expressed as polynomials in derivatives and therefore do not appear in3(∂̄)−3(−

←
∂̄ ).

• In discrete models the left and right derivatives with respect to the same variable do
not commute (in contrast to classical differential calculus). Nevertheless it is sufficient
to consider mixed monomials with fixed ordering[µ1, . . . , µk][µk+1, . . . , µl ], as mixed
monomials with any other ordering would produce non-constant coefficients in (10) and,
by the first remark, are not allowed.

Now we are able to write the general form of the solution for equation (8):

0µ(∂̄,−
←
∂̄ ) =

N−1∑
l=1

l∑
k=0

ak
µµ1...µl

[µ1, . . . , µk][µk+1, µk+2, . . . , µl ] + a0
µ (10)

where the coefficients are constant.
We derive the explicit form of the coefficients in (10) using the condition (8):∑

µ

(∂̄φµ
+
←
∂̄φµ

) ◦ 0µ(∂̄,−
←
∂̄ )

=
N−1∑
l=1

l∑
k=0

ak
µµ1...µl

(−[µ1, . . . , µk, µ][µk+1, µk+2, . . . , µl ]

+ [µ1, . . . , µk][µ, µk+1, µk+2, . . . , µl ]
)

+a0
µ

(−[µ] + [µ]
) = 3(∂̄)−3(−

←
∂̄ ) .
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Comparing coefficients of monomials of the same type on the left- and right-hand sides we
get the following equations for the coefficients:

a0
µµ1...µl

= 3µµ1...µl
a0

µ = 3µ 1 6 l 6 N − 1

and

−ak
µµ1...µl

+ ak+1
µk+1µ1...µkµµk+2...µl

= 0 0 6 k 6 l − 1 1 6 l 6 N − 1 . (11)

Due to the symmetry of the coefficients3 the only solution of the system (11) is:

ak
µ1...µl

= 3µ1...µl
0 6 k 6 l 0 6 l 6 N

where all the coefficients of (10) are also symmetric with respect to permutations of lower
indices. This unique solution yields the operator0µ of the form determined in (9) and that
concludes the proof. �

Now, having two solutions of the equation of motion

3(∂̄)G = F3(−
←
∂̄ ) = 0 (12)

we are able to construct the current

Jµ = F0̂µ(∂̄,−
←
∂̄ )G (13)

with

0̂µ(∂̄,−
←
∂̄ ) =

N−1∑
l=1

l∑
k=0

3µµ1...µl
(−
←
∂̄ φµ1

)(−
←
∂̄ φµk

)(ζ−µ +
←
ζ−µ )∂̄φµk+1

. . . ∂̄φµl
+3µ(ζ−µ +

←
ζ−µ )

which obeys the deformed conservation law∑
µ

Dφµ
Jµ = 0 . (14)

Let us recall the definite integrals introduced in [15] fulfilling the fundamental relations∫ a

t

Dφu(τ) dµφ(τ) = u(a)− u(t)

∫ t

b

Dφu(τ) dµφ(τ) = u(t)− u(b) (15)

Dφ

∫ a

t

u(τ ) dµφ(τ) = −u(t) Dφ

∫ t

b

u(τ ) dµφ(τ) = u(t) (16)

which are correctly defined when there exist (finite or not) the following limits:

lim
n→∞φn(t) = a lim

n→∞φ−n(t) = b . (17)

When only one of the limits exists we can use only one of these integrals in further
construction. After integrating over the spatial variables we obtain the integrals of motion,
which in the four-dimensional model appear as follows:

Q(x0) =
∫

dµφ1 dµφ2 dµφ3 J0(x0, x)

Dφ0Q(x0) = −
∫

dµφ1 dµφ2 dµφ3

∑
k

Dφk
Jk = boundary terms= 0 .

(18)

This equation means thatQ is in fact constant on the time lattice.



Conservation laws and integrals of motion for discrete equations 1751

3. Models with non-symmetric generalized difference derivatives

3.1. The conservation laws

Our aim is to derive the conservation laws for equations of motion depending on the
generalized non-symmetric difference derivatives. We shall start as before from the Leibnitz
rule which now appears as follows:

∂φf · g(t) = ∂φf (t)ζ+g(t)+ f (t)∂φg(t) (19)

and leads to the equality

∂φf · ζ−g(t) = g(t)∂φf (t)− f (t)∂
†
φg(t) = f

[←
∂ φ − ∂

†
φ

]
g(t) (20)

where we have used the conjugate operator

∂
†
φ = −∂φζ− . (21)

For the difference andq-derivative this operator is of the form

D
†
h = −D−h ∂†

q = −q−1∂q−1 .

Let us now consider the equation of motion

3(∂) =
N∑

l=0

3µ1...µl
∂φµ1

. . . ∂φµl
(22)

where the coefficients (which may be matrices) are constant and symmetric with respect to
the permutation of the set of indices(µ1 . . . µl) for eachl.

As we can see, the equation of motion depends on the partial generalized difference
derivatives, but our construction applies to mixed models with difference and differential
derivatives as well. All the formulae for mixed models in the symmetric and non-symmetric
cases can be obtained by inserting the respective partial differential derivatives and taking
into account the fact that the operatorζ with respect to the corresponding variable becomes
identity and the discrete integral is then the continuous one. An example of such a model
is theκ-Klein–Gordon equation [1] for which we have presented the conservation law and
integrals of motion in [15], as well as theκ-Dirac equation [4].

Similarly to the previous section we construct the unique local (in the sense of section 2)
operator0µ fulfilling the equality∑

µ

(
←
∂ φµ
− ∂

†
φµ

) ◦ 0µ(
←
∂ , ∂†) = 3(

←
∂ )−3(∂†) (23)

0µ(
←
∂ , ∂†) =

N−1∑
l=1

l∑
k=0

3µµ1...µl

←
∂ φµ1

. . .
←
∂ φµk

∂
†
φµk+1

. . . ∂
†
φµl
+3µ . (24)

Let us check this formula to show the meaning of the product◦ :∑
µ

(
←
∂ φµ
− ∂

†
φµ

) ◦ 0µ(
←
∂ , ∂†)

=
N−1∑
l=1

l∑
k=0

3µµ1...µl

←
∂ φµ1

. . .
←
∂ φµk

(
←
∂ φµ
− ∂

†
φµ

)∂
†
φµk+1

. . . ∂
†
φµl
+3µ(

←
∂ φµ
− ∂

†
φµ

)

= 3(
←
∂ )−3(∂†) .

In the following proof we can see by construction that the operator0µ given by (24) is
unique in the class of local discrete operators.
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Proof. As in section 2 within this proof we denote the monomials of derivatives acting on
the right- and left-hand sides as follows:

[µ1, . . . , µk] = ∂
†
φµ1

. . . ∂
†
φµk

[µ1, . . . , µk] = ←∂ φµ1
. . .
←
∂ φµk

.

From the Leibnitz rule (19) for the non-symmetric derivative it is clear that we should
consider now the general polynomial of orderN − 1 with functional coefficients. It has the
following form:

0µ(
←
∂ , ∂†) =

N−1∑
l=1

l∑
k=0

[µ1, . . . , µk]ak
µµ1...µl

[µk+1, µk+2, . . . , µl ] + a0
µ

We apply the condition (23) to the general form of the solution in order to derive the explicit
formulae for the coefficients:∑

µ

(
←
∂ φµ
− ∂

†
φµ

) ◦ 0µ(
←
∂ , ∂†)

=
N−1∑
l=1

l∑
k=0

∑
µ

[µ1, . . . , µk, µ]ak
µµ1...µl

[µk+1, µk+2, . . . , µl ]

−
N∑

l=1

l∑
k=0

[µ1, . . . , µk]
∑

µ

(
ζ−µ ak

µµ1...µl

)
[µ, µk+1, µk+2, . . . , µl ]

−
N∑

l=1

l∑
k=0

[µ1, . . . , µk]
∑

µ

(
∂

†
φµ

ak
µµ1...µl

)
[µk+1, µk+2, . . . , µl ]

+
∑

µ

[µ]a0
µ −

∑
µ

(ζ−µ a0
µ)[µ] −

∑
µ

(∂
†
φµ

a0
µ) = 3(

←
∂ )−3(∂†) .

As in the proof from section 2, we compare the coefficients of monomials of the same type
on both sides of the above condition and obtain the following set of difference equations
for the functionsak

µ1...µj
(no summation over repeating indices):

ζ−µ a0
µµ1...µl

= 3µµ1...µl
ζ−µ a0

µ = 3µ 1 6 l 6 N − 1 (25)

and

ak
µµ1...µl

− ζ−µ ak+1
µk+1µ1...µkµµk+2...µl

−
∑

α

∂
†
φα

ak
αµ1...µkµµk+1...µl

= 0 (26)

where

0 6 k 6 l − 1 1 6 l 6 N − 1 .

Starting from (25) we get the unique constant solution for the coefficientsa0:

a0
µ1...µl

= 3µ1...µl
1 6 l 6 N .

This symmetric constant solution for initial coefficients allows us to evaluate the remaining
ones, and we see that they are also constant and symmetric:

ak
µ1...µl

= 3µ1...µl
1 6 l 6 N 1 6 k 6 l .

The derivation of the explicit formulae for the unique solution of the coefficients of the
operator0µ concludes the proof of the formula (24). �
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Now we need two solutions of the corresponding equation of motion and its conjugate
version:

G3(
←
∂ ) = 3(∂†)F = 0 . (27)

These solutions allow us to construct the currentJµ in the form

Jµ = G0̂µ(
←
∂ , ∂†)F (28)

where

0̂µ(
←
∂ , ∂†) =

N−1∑
l=1

l∑
k=0

3µµ1...µl

←
∂ φµ1

. . .
←
∂ φµk

ζ−µ ∂
†
φµk+1

. . . ∂
†
φµl
+3µζ−µ . (29)

This current is conserved according to the following conservation law:∑
µ

∂φµ
Jµ = 0 (30)

where the generalized non-symmetric difference derivative replaces the differential
derivatives from the classical formula.

In the proof of this equality we use the modification of the Leibnitz rule (20) and the
property of the operator0µ (23):∑

µ

∂φµ
Jµ =

∑
µ

∂φµ

[
G0̂µ(

←
∂ , ∂†)F

]

=
∑

µ

∂φµ
G

[
N−1∑
l=1

l∑
k=0

3µµ1...µl
(
←
∂ φµ1

) . . . (
←
∂ φµk

)ζ−1
µ ∂

†
φµk+1

. . . ∂
†
φµl
+3µζ−µ

]
F

=
∑

µ

G

[
N−1∑
l=1

l∑
k=0

3µµ1...µl
(
←
∂ φµ1

) . . . (
←
∂ φµk

)(
←
∂ φµ
− ∂

†
φµ

)∂
†
φµk+1

. . . ∂
†
φµl

+ 3µ(
←
∂ φµ
− ∂

†
φµ

)

]
F

= G[3(
←
∂ )−3(∂†)]F = 0 .

As the functionsG andF fulfil the corresponding equations of motion (27) the current (28)
is conserved.

3.2. Integrals of motion

Let us recall the inverse operator for the non-symmetric generalized difference
derivative [12, 13]:∫ a

t

dµφ(τ) u(τ) =
∞∑

n=0

u[φn(t)][φn+1(t)− φn(t)] (31)

∫ t

b

dµφ(τ) u(τ) =
∞∑

n=1

u[φ−n(t)][φ−n+1(t)− φ−n(t)] . (32)
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These operators obey the fundamental laws of the definite integration:

∂φ

∫ a

t

dµφ(τ) u(τ) = −u(t)

∫ a

t

dµφ(τ) ∂φu(τ) = u(a)− u(t) (33)

∂φ

∫ t

b

dµφ(τ) u(τ) = u(t)

∫ t

b

dµφ(τ) ∂φu(τ) = u(t)− u(b) . (34)

Provided the definitions are correct that means there exists (finite or not) the limit

lim
n→∞φn(t) = a

corresponding to the construction of the operator (31) or

lim
n→∞φ−n(t) = b

which allows us to define the operator (32).
We can use now these operators to construct the integrals of motion as

Q(x0) =
∫

dµφ1(x1) dµφ2(x2) dµφ3(x3) J0(x0, x) . (35)

This integral is constant on the time lattice due to the conservation law (30).
Let us note that the construction can easily be extended to models with arbitrary space

dimension. In this case we simply integrate over all the spatial dimensions in (35).

4. Applications

We shall apply the method derived above to a few examples, namely to the nonlinear
difference and generalized difference equation of a mechanical system as well as to the
q-wave equations being the realizations of the eigenvalue problem of the Casimir operator
for the corresponding quantum algebras [3].

4.1. Nonlinear difference equation

Let us start with the following nonlinear difference equation:

qk(t + 2h)+ qk(t − 2h) = fk(q(t)) k = 1, . . . , N (36)

where t ∈ hZ. This equation can be reformulated to a symplectic map [8], but here we
consider only the integrals of motion for the above equation.

According to our method we can rewrite this equation as follows:

D̄2
hqk(t) = fk(q(t))+ 2qk(t)

4h2
(37)

where we have used the symmetric difference derivative andq(t) = q(t)·q(t). We construct
the integrals of motion by the use of formulae (28), (29):

J = qT[(ζ− + ←ζ −)D̄ −
←
D̄(ζ− + ←ζ −)]δq . (38)

It is clear that the equation (37) is invariant with respect to translation and rotations. So we
chooseδ asζ andR whereR denotes then-dimensional rotation matrixRTR = 1. When
we assume that the functionsfk fulfil the equality:

qTζ f − fTζq = qTRf − fTRq = 0

we obtain the integrals of motion for equation (37):

DhJ = 0 . (39)
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The same procedure can be applied to more complicated equations that depend explicitly
on the lattice variables:

∂̄2
φqk(t) = Fk[q(t)] . (40)

As before we can write down the integrals of motion as

J = qT[(ζ− + ←ζ −)∂̄φ −
←
∂̄φ(ζ− + ←ζ −)]Rq (41)

provided that the functionF fulfils the equality

qTRF− FTRq = 0

whereR denotes the matrix of rotation.

4.2. The q-deformed wave equation in D = 3

We shall apply the procedure to theq-deformed wave-equation, which was considered by
Floreanini and Vinet [3] in the form[

(D+t )2−D−x1
D−x2

]
8 = 0 (42)

We use the original notatation here, where the partialq-derivatives act as follows:

D+t 8(t, x1, x2) = t−1(−ζ+t + 1)8(t, x1, x2) = (1− q)∂t
q8(t, x1, x2)

D−xi
8(t, x1, x2) = x−1

i (−ζ−2
xi
+ 1)8(t, x1, x2) = (1− q−2)∂

xi

q−28(t, x1, x2) .

Let us quote the realization of the symmetry operators of this equation obtained in [3],
which after reformulation form the quantum algebra:

Pt = D+t P1 = 1

1+ q
D−x1

P2 = 1

1+ q
D−x2

M = ζ+2
x1

ζ−2
x2

D = q
1
2 ζ+t ζ+2

x1
ζ 2
x2

G1 = 1

1− q
(tD−x2

− q2x1D
+
t )ζ−t G2 = 1

1− q
(tD−x1

− q2x2D
+
t )ζ−t

K1 = 1

(1− q)2
(q−2t2D−x2

+ x2
1D−x1
− q(1+ q)x1tD

+
t − (1− q)x1)ζ

−2
t

K2 = 1

(1− q)2
(q−2t2D−x1

+ x2
2D−x2
− q(1+ q)x2tD

+
t − (1− q)x2)ζ

−2
t

K0 = 1

(1− q)2
(q(t2+ q3x1x2)D

+
t − t (x1D−x1

+ x2D−x2
)+ (1− q)t)ζ−2

t .

(43)

Having these transformations of the solution of the wave equation we can construct the
conserved current acording to equations (20), (24) and (29). Let us start with the modification
of the Leibnitz rule:

D+t f ζ−t g = f
( ←
D+t − (D+t )†

)
g

D−xi
f ζ+2

xi
g = f

( ←D−xi
− (D−xi

)†
)
g

where

(D+t )† = −D+t ζ−t (D−xi
)† = −D−xi

ζ+2
xi

.
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The operator0 takes the form

00 =
←

D+t + (D+t )† (44)

01 = −
←D−x2

02 = −(D−x1
)† . (45)

We now consider the solutions of the wave equation and of its conjugate:[
(D+t )2−D−x1

D−x2

]
G = 0 G = δ8 (46)

[
(D+t )2−D−x1

D−x2

]†
F = 0 (47)

whereδ denotes transformations leaving theq-wave-equation invariant (43) and obtain the
conserved current

Jµ = G0̂µF (48)

where

0̂0 =
←

D+t ζ−t + ζ−t (D+t )†

0̂1 = −
←D−x2

ζ+2
x1

0̂2 = −ζ+2
x2

(D−x1
)† .

It is clear from the results of section 3 that the following conservation law is fulfilled
on-shell ((46), (47)):

D+t J0+D−x1
J1+D−x2

J2 = 0 (49)

and it can also be rewritten using the standardq-derivatives as

∂t
qJ0+ ∂

x1

q2(−q−1− q−2)J1+ ∂
x2

q2(−q−1− q−2)J2 = 0 . (50)

The conservation law thus obtained yields the integrals of motion

Q(t) =
∫

dµ1 dµ2 J0(t, x1, x2) =
∫

dµ1 dµ2 δ8[
←

D+t ζ−t + ζ−t (D+t )†]F (51)

where dµi denotes the measure in the definite integral corresponding to∂
xi

q−2.

4.3. Theq-deformed wave equation in D = 4

We shall repeat the construction for the wave equation in four-dimensional space, in light-
cone coordinates [3]:[

D−x1
D−x2
−D+x3

D+x4

]
8 = 0 . (52)

As before, we consider the solutions of (52) and of its conjugate[
D−x1

D−x2
−D+x3

D+x4

]
δ8 = 0

[
D−x1

D−x2
−D+x3

D+x4

]†
F = 0 (53)
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whereδ is taken from the set of transformations commuting with theq-wave equation [3]:

Pi = D−xi
i = 1, 2 Pi = D+xi

i = 3, 4

M1 = ζ+x1
ζ+x4

M2 = ζ+x2
ζ+x4

M3 = ζ+x3
ζ−x4

G1 = 1

1− q
(x4D

−
x2
− qx1D

+
x3

)ζ+x1
G2 = 1

1− q
(x3D

−
x2
− qx1D

+
x4

)ζ+x1

G3 = 1

1− q
(x4D

−
x1
− qx2D

+
x3

)ζ+x1
G4 = 1

1− q
(x3D

−
x1
− qx2D

+
x4

)ζ+x1

K1 = 1

(1− q)2
(q2x1x2D

+
x4
− x1x3D

−
x1
− x2x3D

−
x2
+ qx2

3D+x3
+ (1− q)x3)ζ

+2
x1

K2 = 1

(1− q)2
(q2x1x2D

+
x3
− x1x4D

−
x1
− x2x4D

−
x2
+ qx2

4D+x4
+ (1− q)x4)ζ

+2
x1

K3 = 1

(1− q)2
(−qx2x3D

+
x3
− qx2x4D

+
x4
+ q−1x3x4D

−
x1
+ x2

2D−x2
− (1− q)x2)ζ

+2
x1

K4 = 1

(1− q)2
(−qx1x3D

+
x3
− qx1x4D

+
x4
+ q−1x3x4D

−
x2
+ x2

1D−x1
− (1− q)x1)ζ

+2
x1

.

(54)

We obtain the current in the form

Jµ = δ80̂µF (55)

where the operator̂0 appears as follows:

0̂1 =
←

D−x2
ζ+1 0̂2 = ζ+2 (D−x1

)† (56)

0̂3 = −
←

D+x4
ζ−3 0̂4 = −ζ−4 (D+x3

)† . (57)

The current thus constructed obeys the conservation law

D−x1
J1+D−x2

J2+D+x3
J3+D+x4

J4 = 0 (58)

which can also be written usingq-derivatives as

∂
x1

q−1J1+ ∂
x2

q−1J2+ ∂x3
q (−q)J3+ ∂x4

q (−q)J4 = 0 . (59)

However, in this case we cannot construct the constants of motion as we are in light-
cone coordinates and we do not yet know the formula for changing variables for partial
q-derivatives.

5. Final remarks

In this paper the conservation laws and integrals of motion for a class of equations of motion
for discrete and mixed models have been derived.

In order to extend our investigations to arbitrary equations with generalized difference
derivatives we should aim at derivation of the Noether-type theorem for such models. So
far we have obtained preliminary results [12] for models described by standard difference
derivatives. It seems to be interesting and possible to consider as a special case of such
a theorem general models invariant with respect to transformations that do not act on the
lattice.

As we have shown [13] in discrete mechanics, we obtain equations that include the
generalized difference derivative and its conjugate. This class of equations remains to be
investigated.
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